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Scheme 1. Synthesis of highly functionalized tetrahydrofurans by double Michael
reaction.
Highly substituted tetrahydrofurans are ubiquitous in many
natural and unnatural products of biological importance.1,2 Meth-
ylenetetrahydrofurans form a very useful class of skeletal building
blocks, and are derived from extensive synthetic protocols.2,3

Among the methods developed, a formal [3+2] cycloaddition reac-
tion of propargyl alcohols to electrophilic alkene received consider-
able attention.3 Initially, a typical tandem reaction involving
conjugate (Michael) additions of activated propargyl alcohol to
a-nitroalkene was reported by Ikeda and others using tBuOK.4a,4b

Lately, Morikawa et al. re-examined the reaction with Lewis acid
catalyst to overcome the instability of activated propargyl alcohol
with limited substrate scope.4c

Phosphine-catalyzed reactions using electrophilic alkenes have
emerged as powerful synthetic tool for the construction of N,O-
heterocycles such as tetrahydropyrroles, tetrahydropyridines,
dioxanes, and pyrones.9 We anticipated similar [3+2] cycloaddition
to methylenetetrahydrofurans using Bu3P from activated propargyl
alcohol of type 1 with Michael acceptor 2 (Scheme 1). Accordingly,
we have investigated this useful reaction to increase the substrate
scope and compatibility.

Herein, we report our preliminary results using ethyl 4-
hydroxybut-2-ynoate 1 and electrophilic alkenes such as alkyl-
idene malonate 2. Our early efforts focused on alkene 2a to define
the optimal reaction conditions (Scheme 2). Addition of substrate
2a to propargyl alcohol 1 in the presence of tertiary amines (TEA,
DBU, DABCO, and DMAP) furnished the expected tetrahydrofuran
with slow conversion rate. Manipulation of the solvent, catalyst,
ll rights reserved.
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on).
and temperature did not improve the conversion to tetrahydrofu-
ran. In all the cases, minor formation of product was observed,
along with a new by-product, 4. The new by-product was
characterized as dioxane 4, and was formed by self conjugate addi-
tion of propargyl alcohol 1.5 In addition, reactions conducted at
elevated temperature (>100 �C) led to a considerable decomposi-
tion of starting materials. Interestingly, use of highly nucleophilic
tributylphosphine eliminated the formation of this side product
and gave the tetrahydrofuran 3a exclusively. The catalytic nature
of the reaction was investigated by varying the solvent to find
the optimum loading of Bu3P (10 mol % for complete conversion
under solvent free conditions).6a More importantly, a high compat-
ibility of tributylphosphine to the electrophilic alkene and propar-
gyl alcohol 1 was observed under these reaction conditions. Our
attempts to replace Bu3P catalyst with other phosphines, such as
triphenylphosphine, were not successful.

Having identified the suitable reaction conditions, the scope of
reaction was explored with a range of alkylidene-, arylidene-,
and heteroarylidene malonate/Meldrum’s acid based alkene
derivatives (Table 1). The required Michael acceptors (2a–j) were
prepared by following known literature methods.7 Tandem conju-
gate addition of alkylidene and branched alkylidene malonate
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Table 1

Entry Michael acceptor Product Solvent (temp.) Time (h) Yielda (E:Z)

1
Me

CO2Me

CO2Me
2a

O Me

CO2Me

CO2Me
EtO2C

3a

Neat (rt) 4 86% (1:1.7)

2

nPr
CO2Me

CO2Me

2b

O
nPr

EtO2C CO2Me

CO2Me

3b

Neat (rt) 6 80% (1:1.6)

3

iPr
CO2Me

CO2Me

2c

O
iPr

EtO2C CO2Me

CO2Me

3c

Neat (rt) 8 80% (1:1.6)

4

iBu
CO2Me

CO2Me

2d

O iBu

EtO2C CO2Me

CO2Me

3d

Neat (rt) 8 92% (1:2)

5
n-Hept

CO2Me

CO2Me

2e

O
nHept

EtO2C CO2Me

CO2Me

3e

Neat (rt) 8 75% (1:1.5)

6

CO2Me

CO2Me

Ph

2f

O

EtO2C
CO2Me

CO2Me

Ph

3f

Toluene (80 �C) 6 78% (1:1.6)

7

CO2Me

CO2Me
MeO

2g

O

O
O

OMe

EtO2C

O

O
3g

Toluene (80 �C) 4 89% (1:4.1)

8

CO2Me

CO2Me

OMe
MeO

2h

O

O
OEtO2C

O

O

OMe

OMe

3h

Toluene (80 �C) 8 83% (1:3.1)

9

CO2Me

CO2Me

Br

2i

O

O
OEtO2C

O

O

Br

3i

Toluene (80 �C) 6 85% (1:5.1)

10

CO2Me

CO2MeS

2j

O

O
O

S

EtO2C

O

O

3j

Toluene (80 �C) 4 87% (1:3.1)

a Isolated yields.
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Scheme 2. Synthesis of tetrahydrofuran using alkene 2a and propargyl alcohol 1.
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Scheme 3. Three component coupling reaction for the synthesis of highly substituted tetrahydrofuran ring.
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acceptors underwent clean transformation to provide the 3-alkyl-
idene tetrahydrofurans (3), as a separable E:Z mixture, in good
yield (entries 1–6). The arylidene and heteroarylidene malonate
esters were found to be inert under the same reaction conditions,
and further optimization of reaction conditions varying the tem-
perature and solvent did not yield the required product. The more
reactive arylidene and heteroarylidene alkenes derived from Mel-
drum’s acid provided the tetrahydrofuran ring through modifica-
tion of reaction conditions (entries 7–10).6b The spectral data of
each of the products showed a characteristic olefin proton for the
E-isomer in between d 6.01 and 6.50 ppm, whereas the Z-olefinic
proton appeared in the region of d 5.80–6.09 ppm.3,6c

Considering the instability and highly reactive nature of alkyl-
idene Meldrum’s acids, the anticipated tandem conjugate addition
reaction was planned using the in situ generation of alkene from
the aldehyde and Meldrum’s acid (Scheme 3). The mixture of Mel-
drum’s acid, octanal and ethyl 4-hydroxybut-2-ynoate 1 was trea-
ted with Bu3P. Heating the reaction mixture at 80 �C in toluene led
to the formation of tetrahydrofuran 3k as a E:Z (2:1) isomeric mix-
ture in 40% yield.8 Increasing the amount of catalyst Bu3P and vary-
ing the solvent did not improve the yield. This multicomponent
reaction was further examined using additional aldehydes includ-
ing p-anisaldehyde and 1,2-dimethoxy benzaldehyde (3g and 3h)
where products were found in low yields (42% and 46% respec-
tively, Scheme 3). It is likely that the thermal instability of enoliz-
able Meldrum’s acid was the reason for observed lower yields.
Further optimization of reaction conditions of this three-compo-
nent reaction system is currently in progress.

In connection with previous reports, we propose the probable
mechanism as a formal [3+2] cycloaddition of zwitterionic
intermediate II (formed by the initial attack of the nucleophilic
RO2C
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Scheme 4. Probable mechanism for the tandem conjugate addition reaction.
Bu3P on 1) with electrophilic alkene 2, leading to meth-
ylenetetrahydrofuran 3 (Scheme 4).3,9 In the proposed mechanistic
path, path a accounts for the catalytic nature of reaction. Comple-
mentary catalytic cycles (path b and path c) are expected to com-
pete with path a in the case of solvent-free reaction conditions.
The strong basic nature of enolate intermediates I or V could trig-
ger the catalytic cycles path b and path c by proton abstraction
from propargyl alcohol 1. The proposed mechanism also explains
the observed poor olefin regioselectivity of product 3 by the inter-
mediacy of allene I and/or V. Absence of Michael addition product
IV (protonated) further supports the derived mechanism.

In conclusion, we have demonstrated efficient and simple
methodology to highly functionalized tetrahydrofuran rings from
readily available starting materials using catalytic amount of tri-
butylphosphine. In the course of the reaction, we have also devel-
oped a promising one-pot, three-component coupling reaction for
the same.
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